Search results for "Supramolecular organocatalysis"

showing 2 items of 2 documents

The Hexameric Resorcinarene Capsule as a Brønsted Acid Catalyst for the Synthesis of Bis(heteroaryl)methanes in a Nanoconfined Space

2019

Herein, we show that the hexameric resorcinarene capsule C is able to catalyze the formation of bis(heteroaryl)methanes by reaction between pyrroles or indoles and carbonyl compounds (α-ketoesters or aldehydes) in excellent yields and selectivity. Our results suggest that the capsule can play a double catalytic role as a H-bond catalyst, for the initial activation of the carbonyl substrate, and as a Bronsted acid catalyst, for the dehydration of the intermediate alcohol.

supramolecular organocatalysisAlcohol02 engineering and technology010402 general chemistry01 natural sciencesCatalysislcsh:Chemistrychemistry.chemical_compoundPolymer chemistryBrønsted acid catalystOriginal ResearchChemistrySubstrate (chemistry)CapsuleH-bond catalystGeneral Chemistryself-assemblyResorcinareneSupramolecular organocatalysis; Resorcinarene hexameric capsule; Bis(heteroaryl)methanes; Self-assembly; H-bond catalyst; Brønsted acid catalyst021001 nanoscience & nanotechnology0104 chemical sciencesChemistrylcsh:QD1-999Self-assembly0210 nano-technologyBrønsted–Lowry acid–base theorySelectivityresorcinarene hexameric capsulebis(heteroaryl)methanesFrontiers in Chemistry
researchProduct

Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

2018

In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively th…

supramolecular organocatalysisSupramolecular chemistryContext (language use)Review010402 general chemistry01 natural scienceslcsh:ChemistryHydrophobic effectMolecular recognitionCalixareneHydrophobic effectsupramolecular organocatalysis Water Hydrophobic effect molecular recognition Calixarenes CyclodextrinsCyclodextrins010405 organic chemistryChemistryRegioselectivityWaterGeneral ChemistryCombinatorial chemistry0104 chemical sciencesChemistrylcsh:QD1-999Organic reactionOrganocatalysismolecular recognitionCalixarenes
researchProduct